High diversity and putative novel Class 2 CRISPR-Cas systems effectors from hot springs
DOI:
https://doi.org/10.59758/rcci.2025.3.e51Palabras clave:
CRISPR-Cas, Fuentes termales, Cas9, TermófilosResumen
CRISPR-Cas systems are present in ~42% of the bacterial and ~80% of archaeal genomes from all environments but enriched in thermophilic and hyperthermophilic members, reaching ~80% prevalence. Most descriptions of CRISPR-Cas in thermophiles consider hyperthermophilic archaeal species, where class 2 CRISPR-Cas systems are virtually absent. Despite their abundance in thermal environments, no study has described CRISPR-Cas diversity in hot springs communities worldwide in mesothermophilic (40°C-80°C) and circumneutral pH (6–8). Objective: To describe the types and subtypes of CRISPR-Cas systems in 37 hot springs metagenomes within this temperature and pH ranges, emphasizing the mining of novel class 2 variants. Methodology: Quantification of CRISPR-Cas systems through bioinformatic tools. Results: Searching all CRISPR-Cas systems revealed 2296 systems in hot springs, encompassing all types described to date. Using a phylogenetic and identity matrix approach, 57 class 2 effector proteins Cas9 were found, revealing potentially novel variants of Cas9. Conclusions: The large diversity observed could be the first glance toward further characterization of CRISPR-Cas loci and potential new variants with biotechnological applications. Furthermore, the results highlight hot springs for studies of the ecology and evolution of CRISPR-Cas by revealing new genetic sequences that can contribute to filling the gaps in the evolution of these systems.
Descargas
Referencias
Adalsteinsson, B. T.; Kristjansdottir, T.; Merre, W.; Helleux, A.; Dusaucy, J.; Tourigny, M.; Fridjonsson, O.; Hreggvidsson, G. O. (2021). Efficient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant. Scientific Reports, 11(1), 9586. https://doi.org/10.1038/s41598-021-89029-2
Alcorta, J.; Alarcón-Schumacher, T.; Salgado, O. & Díez, B. (2020). Taxonomic novelty and distinctive genomic features of hot spring cyanobacteria. Frontiers in Genetics, 11, 1391. https://doi.org/10.3389/fgene.2020.568223
Aliaga Goltsman, D. S.; Alexander, L. M.; Lin, J.-L.; Fregoso Ocampo, R.; Freeman, B.; Lamothe, R. C.; Perez Rivas, A.; Temoche-Diaz, M. M.; Chadha, S.; Nordenfelt, N.; Janson, O. P.; Barr, I.; Devoto, A. E.; Cost, G. J.; Butterfield, C. N.; Thomas, B. C.; Brown, C. T. (2022). Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nature Communications, 13, 7602. https://doi.org/10.1038/s41467-022-35257-7
Ali, Z.; Aman, R.; Mahas, A.; Rao, G. S.; Tehseen, M.; Marsic, T.; Salunke, R.; Subudhi, A. K.; Hala, S. M.; Hamdan, S. M.; Pain, A.; Alofi, F. S.; Alsomali, A.; Hashem, A. M.; Khogeer, A.; Almontashiri, N. A. M.; Abedalthagafi, M.; Hassan, N. & Mahfouz, M. M. (2020). iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Research, 288, 198129. https://doi.org/10.1016/j.virusres.2020.198129
Al-Shayeb, B.; Sachdeva, R.; Chen, L.-X.; Ward, F.; Munk, P.; Devoto, A.; Castelle, C. J.; Olm, M. R.; Bouma-Gregson, K.; Amano, Y.; He, C.; Méheust, R.; Brooks, B.; Thomas, A.; Lavy, A.; Matheus-Carnevali, P.; Sun, C.; Goltsman, D. S. A.; Borton, M. A.; Sharrar, A.; Jaffe, A. L.; Nelson, T. C.; Kantor, R.; Keren, R.; Lane, K. R.; Farag, I. F.; Lei, S.; Finstad, K.; Amundson, R.; Anantharaman, K.; Zhou, J.; Probst, A. J.; Power, M. E.; Tringe, S. G.; Li, W.-J.; Wrighton, K.; Harrison, S.; Morowitz, M.; Relman, D. A.; Doudna, J. A.; Lehours, A.-C.; Warren, L.; Cate, J. H. D.; Santini, J. M., & Banfield, J. F. (2020). Clades of huge phages from across Earth’s ecosystems. Nature, 578, 425–431. https://doi.org/10.1038/s41586-020-2007-4
Altae-Tran, H.; Kannan, S.; Demircioglu, F. E.; Oshiro, R.; Nety, S. P.; McKay, L. J.; Dlakić, M.; Inskeep, W. P.; Makarova, K. S.; Macrae, R. K.; Koonin, E. V., & Zhang, F. (2021). The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science, 374, 57–65. https://doi.org/10.1126/science.abj6856
Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Anderson, R. E.; Brazelton, W. J. & Baross, J. A. (2011). Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiology Ecology, 77(1), 120–133. https://doi.org/10.1111/j.1574-6941.2011.01090.x
Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A. & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140
Barrangou, R. & Gersbach, C. A. (2017). Expanding the CRISPR Toolbox: Targeting RNA with Cas13b. Molecular Cell, 65(5), 582–584. https://doi.org/10.1016/j.molcel.2017.02.002
Bolduc, B.; Shaughnessy, D. P.; Wolf, Y. I.; Koonin, E. V.; Roberto, F. F. & Young, M. (2012). Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. Journal of Virology, 86(10), 5562–5573. https://doi.org/10.1128/JVI.07196-11
Bowers, R. M.; Kyrpides, N. C.; Stepanauskas, R.; Harmon-Smith, M.; Doud, D.; Reddy, T. B. K.; Schulz, F.; Jarett, J.; Rivers, A. R.; Eloe-Fadrosh, E. A.; Tringe, S. G.; Ivanova, N. N.; Copeland, A.; Clum, A.; Becraft, E. D.; Malmstrom, R. R.; Birren, B.; Podar, M.; Bork, P. ... & Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 35(7), 725–731. https://doi.org/10.1038/nbt.3893
Broniewski, J. M.; Meaden, S.; Paterson, S.; Buckling, A. & Westra, E. R. (2020). The effect of phage genetic diversity on bacterial resistance evolution. ISME Journal, 14(4), 828–836. https://doi.org/10.1038/s41396-019-0577-7
Burstein, D.; Harrington, L. B.; Strutt, S. C.; Probst, A. J.; Anantharaman, K.; Thomas, B. C.; Doudna, J. A. & Banfield, J. F. (2016). New CRISPR–Cas systems from uncultivated microbes. Nature, 542(7641), 237–241. https://doi.org/10.1038/nature21059
Capella-Gutiérrez, S.; Silla-Martínez, J. M. & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Chaumeil, P. A.; Mussig, A. J.; Hugenholtz, P. & Parks, D. H. (2020). GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36(6), 1925–1927. https://doi.org/10.1093/bioinformatics/btz848
Chevallereau, A.; Meaden, S.; van Houte, S.; Westra, E. R. & Rollie, C. (2019). The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772), 20180094. https://doi.org/10.1098/rstb.2018.0094
Childs, L. M.; England, W. E.; Young, M. J.; Weitz, J. S. & Whitaker, R. J. (2014). CRISPR-induced distributed immunity in microbial populations. PLoS ONE, 9(4), e101710. https://doi.org/10.1371/journal.pone.0101710
Conrad, R. A.; Evenhuis, J. P.; Lipscomb, R. S.; Pérez-Pascual, D.; Stevick, R. J.; Birkett, C.; Ghigo, J.-M. & McBride, M. J. (2022). Flavobacterium columnare ferric iron uptake systems are required for virulence. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1029833
Crawley, A. B.; Henriksen, J. R. & Barrangou, R. (2018). CRISPRdisco: An automated pipeline for the discovery and analysis of CRISPR-Cas systems. CRISPR Journal, 1(3), 171–181. https://doi.org/10.1089/crispr.2017.0022
Doron, S.; Melamed, S.; Ofir, G.; Leavitt, A.; Lopatina, A.; Keren, M.; Amitai, G. & Sorek, R. (2018). Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 359(6379), eaar4120. https://doi.org/10.1126/science.aar4120
Drake, J. W. (2009). Avoiding dangerous missense: Thermophiles display especially low mutation rates. PLoS Genetics, 5(1), e1000520. https://doi.org/10.1371/journal.pgen.1000520
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
Esquerra-Ruvira, B.; Baquedano, I.; Ruiz, R.; Fernández, A.; Montoliu, L. & Mojica, F. J. M. (2023). Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering. Microbial Biotechnology, 16(6), 1505–1523. https://doi.org/10.1111/1751-7915.14266
Fan, C.; Zhang, W.; Su, X.; Ji, W.; Luo, H.; Zhang, Y.; Liu, B.; Yao, B.; Huang, H. & Xu, X. (2021). CRISPR/Cas9-mediated genome editing directed by a 5S rRNA–tRNAGly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. Biotechnology for Biofuels, 14(1), 206. https://doi.org/10.1186/s13068-021-02057-y
Faure, G.; Shmakov, S. A.; Yan, W. X.; Cheng, D. R.; Scott, D. A.; Peters, J. E.; Makarova, K. S. & Koonin, E. V. (2019). CRISPR–Cas in mobile genetic elements: Counter-defense and beyond. Nature Reviews Microbiology, 17(8), 513–525. https://doi.org/10.1038/s41579-019-0204-7
Fonfara, I.; Le Rhun, A.; Chylinski, K.; Makarova, K. S.; Lécrivain, A.-L.; Bzdrenga, J.; Koonin, E. V. & Charpentier, E. (2014). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Research, 42(4), 2577–2590. https://doi.org/10.1093/nar/gkt1074
Friedman, R.; Drake, J. W. & Hughes, A. L. (2004). Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles. Genetics, 167(4), 1507–1512. https://doi.org/10.1534/genetics.104.026344
Fu, L.; Niu, B.; Zhu, Z.; Wu, S. & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565
Fuchs, R. T.; Curcuru, J. L.; Mabuchi, M.; Noireterre, A.; Weigele, P. R.; Sun, Z. & Robb, G. B. (2022). Characterization of Cme and Yme thermostable Cas12a orthologs. Communications Biology, 5, 1–16. https://doi.org/10.1038/s42003-022-03275-2
Gasiunas, G.; Young, J. K.; Karvelis, T.; Kazlauskas, D.; Urbaitis, T.; Jasnauskaite, M.; Grusyte, M. M.; Paulraj, S.; Wang, P.-H.; Hou, Z.; Dooley, S. K.; Cigan, M.; Alarcon, C.; Chilcoat, N. D.; Bigelyte, G.; Curcuru, J. L.; Mabuchi, M.; Sun, Z.; Fuchs, R. T.; Schildkraut, E.; Weigele, P. R.; Jack, W. E.; Robb, G. B.; Venclovas, Č. & Siksnys, V. (2020). A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nature Communications, 11(1), 5512. https://doi.org/10.1038/s41467-020-19344-1
Gault, S.; Higgins, P. M.; Cockell, C. S. & Gillies, K. (2021). A meta-analysis of the activity, stability, and mutational characteristics of temperature-adapted enzymes. Bioscience Reports, 41(6), BSR20210336. https://doi.org/10.1042/BSR20210336
Glew, M. D.; Veith, P. D.; Peng, B.; Chen, Y.-Y.; Gorasia, D. G.; Yang, Q.; Slakeski, N.; Chen, D.; Moore, C.; Crawford, S. & Reynolds, E. C. (2012). PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. Journal of Biological Chemistry, 287(30), 24605–24617. https://doi.org/10.1074/jbc.M112.369223
Gostimskaya, I. (2022). CRISPR–Cas9: A history of its discovery and ethical considerations of its use in genome editing. Biochemistry (Moscow), 87(7), 777–788. https://doi.org/10.1134/S0006297922080090
Guajardo-Leiva, S.; Pedrós-Alió, C.; Salgado, O.; Pinto, F. & Díez, B. (2018). Active crossfire between cyanobacteria and cyanophages in phototrophic mat communities within hot springs. Frontiers in Microbiology, 9, 2039. https://doi.org/10.3389/fmicb.2018.02039
Guajardo-Leiva, S.; Santos, F.; Salgado, O.; Regeard, C.; Quillet, L. & Díez, B. (2021). Unveiling ecological and genetic novelty within lytic and lysogenic viral communities of hot spring phototrophic microbial mats. Microbiology Spectrum, 9(6), e00694-21. https://doi.org/10.1128/spectrum.00694-21
Harrington, L. B.; Paez-Espino, D.; Staahl, B. T.; Chen, J. S.; Ma, E.; Kyrpides, N. C. & Doudna, J. A. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nature Communications, 8, 1–8. https://doi.org/10.1038/s41467-017-01408-4
Harsij, Z.; Ghafoorzadeh, Z. & Goharian, E. (2024). The CRISPR revolution: Unraveling the mysteries of Life’s genetic code. Gene, 892, 147870. https://doi.org/10.1016/j.gene.2023.147870
Heidelberg, J. F.; Nelson, W. C.; Schoenfeld, T. & Bhaya, D. (2009). Germ warfare in a microbial mat community: CRISPRs provide insights into the coevolution of host and viral genomes. PLoS ONE, 4(3), e4169. https://doi.org/10.1371/journal.pone.0004169
Held, N. L. & Whitaker, R. J. (2009). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environmental Microbiology, 11(2), 457–466. https://doi.org/10.1111/j.1462-2920.2008.01784.x
Hille, F.; Richter, H.; Wong, S. P.; Bratovič, M.; Ressel, S. & Charpentier, E. (2018). The biology of CRISPR-Cas: Backward and forward. Cell, 172(6), 1239–1259. https://doi.org/10.1016/j.cell.2017.11.032
Hou, S.; Makarova, K. S.; Saw, J. H.; Senin, P.; Ly, B. V.; Zhou, Z.; Ren, Y.; Wang, J.; Galperin, M. Y.; Omelchenko, M. V.; Wolf, Y. I.; Yutin, N.; Koonin, E. V.; Stott, M. B.; Mountain, B. W.; Crowe, M. A.; Smirnova, A. V.; Dunfield, P. F.; Feng, L.; Wang, L. & Alam, M. (2008). Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biology Direct, 3, 26. https://doi.org/10.1186/1745-6150-3-26
Ipoutcha, T.; Tsarmpopoulos, I.; Talenton, V.; Gaspin, C.; Moisan, A.; Walker, C. A.; Brownlie, J.; Blanchard, A.; Thebault, P. & Sirand-Pugnet, P. (2019). Multiple origins and specific evolution of CRISPR/Cas9 systems in minimal bacteria (Mollicutes). Frontiers in Microbiology, 10, 2701. https://doi.org/10.3389/fmicb.2019.02701
Iranzo, J.; Lobkovsky, A. E.; Wolf, Y. I. & Koonin, E. V. (2013). Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. Journal of Bacteriology, 195(17), 3834–3844. https://doi.org/10.1128/JB.00412-13
Jarett, J. K.; Džunková, M.; Schulz, F.; Roux, S.; Paez-Espino, D.; Eloe-Fadrosh, E.; Jungbluth, S. P.; Ivanova, N.; Spear, J. R.; Carr, S. A.; Trivedi, C. B.; Corsetti, F. A.; Johnson, H. A.; Becraft, E.; Kyrpides, N.; Stepanauskas, R. & Woyke, T. (2020). Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME Journal, 14(10), 2527–2541. https://doi.org/10.1038/s41396-020-0705-4
Jiang, W.; Maniv, I.; Arain, F.; Wang, Y.; Levin, B. R. & Marraffini, L. A. (2013). Dealing with the evolutionary downside of CRISPR immunity: Bacteria and beneficial plasmids. PLoS Genetics, 9(6), e1003844. https://doi.org/10.1371/journal.pgen.1003844
Koonin, E. V. & Krupovic, M. (2023). New faces of prokaryotic mobile genetic elements: Guide RNAs link transposition with host defense mechanisms. Current Opinion in Systems Biology, 36, 100473. https://doi.org/10.1016/j.coisb.2023.100473
Koonin, E. V. & Makarova, K. S. (2022). Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biology, 20(7), e3001481. https://doi.org/10.1371/journal.pbio.3001481
Koonin, E. V. & Makarova, K. S. (2019). Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772), 20180087. https://doi.org/10.1098/rstb.2018.0087
Koonin, E. V. & Makarova, K. S. (2009). CRISPR-Cas: An adaptive immunity system in prokaryotes. F1000 Biology Reports, 6, 1–6. https://doi.org/10.3410/B1-95
Koonin, E. V. & Wolf, Y. I. (2016). Just how Lamarckian is CRISPR-Cas immunity: The continuum of evolvability mechanisms. Biology Direct, 11, 9. https://doi.org/10.1186/s13062-016-0111-z
Lan, X. R.; Liu, Z. L. & Niu, D. K. (2022). Precipitous increase of bacterial CRISPR-Cas abundance at around 45°C. Frontiers in Microbiology, 13, 542. https://doi.org/10.3389/fmicb.2022.773114
Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1), 18–28. https://doi.org/10.1016/j.cell.2015.12.041
Le Lay, C.; Stott, M. B.; Shi, M.; Sadiq, S. & Holmes, E. C. (2023). A metatranscriptomic analysis of geothermal hot springs reveals diverse RNA viruses including the phylum Lenarviricota. Virology, 587, 109873. https://doi.org/10.1016/j.virol.2023.109873
Le, Y.; Fu, Y. & Sun, J. (2020). Genome editing of the anaerobic thermophile Thermoanaerobacter ethanolicus using thermostable Cas9. Applied and Environmental Microbiology, 87(18), e01773-20. https://doi.org/10.1128/AEM.01773-20
Le, Y. & Sun, J. (2022). Chapter one - CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives. In G. M. Gadd & S. Sariaslani (Eds.), Advances in Applied Microbiology (pp. 1–30). Academic Press. https://doi.org/10.1016/bs.aambs.2022.02.001
Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D. & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
Makarova, K. S.; Gao; L.; Zhang, F. & Koonin, E. V. (2019). Unexpected connections between type VI-B CRISPR-Cas systems, bacterial natural competence, ubiquitin signaling network and DNA modification through a distinct family of membrane proteins. FEMS Microbiology Letters, 366(20), fnz088. https://doi.org/10.1093/femsle/fnz088
Makarova, K. S.; Grishin, N. V.; Shabalina, S. A.; Wolf, Y. I. & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1, 7. https://doi.org/10.1186/1745-6150-1-7
Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Wolf, Y. I.; Yakunin, A. F.; van der Oost, J. & Koonin, E. V. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467–477. https://doi.org/10.1038/nrmicro2577
Makarova, K. S.; Wolf, Y. I.; Alkhnbashi, O. S.; Costa, F.; Shah, S. A.; Saunders, S. J.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Haft, D. H.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Terns, R. M.; Terns, M. P.; White, M. F.; Yakunin, A. F.; Garrett, R. A.; van der Oost, J. ... & Koonin, E. V. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722–736. https://doi.org/10.1038/nrmicro3569
Makarova, K. S.; Wolf, Y. I.; Iranzo, J.; Shmakov, S. A.; Alkhnbashi, O. S.; Brouns, S. J. J.; Charpentier, E., Cheng, D.; Haft, D. H.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Scott, D.; Shah, S. A.; Siksnys, V.; Terns, M. P.; Venclovas, Č.; White, M. F.; Yakunin, A. F.; Yan, W. ... & Koonin, E. V. (2020). Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67–83. https://doi.org/10.1038/s41579-019-0299-x
Makarova, K. S.; Wolf, Y. I. & Koonin, E. V. (2022). Evolutionary classification of CRISPR-Cas systems. In Crispr (pp. 13–38). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781683673798.ch2
Makarova, K. S.; Wolf, Y. I. & Koonin, E. V. (2018). Classification and nomenclature of CRISPR-Cas systems: Where from here? CRISPR Journal, 1(6), 325–336. https://doi.org/10.1089/crispr.2018.0033
Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C. J.; Lu, S.; Chitsaz, F.; Derbyshire, M. K.; Geer, R. C.; Gonzales, N. R.; Gwadz, M.; Hurwitz, D. I.; Lu, F.; Marchler, G. H.; Song, J. S.; Thanki, N.; Wang, Z.; Yamashita, R. A.; Zhang, D. ... & Bryant, S. H. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200–D203. https://doi.org/10.1093/nar/gkw1129
Marchler-Bauer, A. & Bryant, S. H. (2004). CD-Search: Protein domain annotations on the fly. Nucleic Acids Research, 32(W1), W327–W331. https://doi.org/10.1093/nar/gkh454
Marraffini, L. A. (2015). CRISPR-Cas immunity in prokaryotes. Nature, 526(7571), 55–61. https://doi.org/10.1038/nature15386
Meaden, S.; Biswas, A.; Arkhipova, K.; Morales, S. E.; Dutilh, B. E.; Westra, E. R. & Fineran, P. C. (2022). High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Current Biology, 32(1), 220–227.e5. https://doi.org/10.1016/J.CUB.2021.10.038
Medina-Aparicio, L.; Rodriguez-Gutierrez, S.; Rebollar-Flores, J. E.; Martínez-Batallar, Á. G.; Mendoza-Mejía, B. D.; Aguirre-Partida, E. D.; Vázquez, A.; Encarnación, S.; Calva, E. & Hernández-Lucas, I. (2021). The CRISPR-Cas system is involved in OmpR genetic regulation for outer membrane protein synthesis in Salmonella Typhi. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.657404
Mikheenko, A.; Saveliev, V. & Gurevich, A. (2016). MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–1090. https://doi.org/10.1093/bioinformatics/btv697
Mohanraju, P.; Makarova, K. S.; Zetsche, B.; Zhang, F.; Koonin, E. V. & Van Der Oost, J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353(6299), aad5147. https://doi.org/10.1126/science.aad5147
Mojica, F. J. M. & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: From prokaryotes to mammals. Trends in Microbiology, 24(9), 811–820. https://doi.org/10.1016/j.tim.2016.06.005
Mougiakos, I.; Mohanraju, P.; Bosma, E. F.; Vrouwe, V.; Finger Bou, M.; Naduthodi, M. I. S.; Gussak, A.; Brinkman, R. B. L.; van Kranenburg, R. & van der Oost, J. (2017). Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nature Communications, 8(1), 1647. https://doi.org/10.1038/s41467-017-01591-4
Moya-Beltrán, A.; Makarova, K. S.; Acuña, L. G.; Wolf, Y. I.; Covarrubias, P. C.; Shmakov, S. A.; Silva, C.; Tolstoy, I.; Johnson, D. B., Koonin, E. V. & Quatrini, R. (2021). Evolution of Type IV CRISPR-Cas systems: Insights from CRISPR loci in integrative conjugative elements of Acidithiobacillia. CRISPR Journal, 4(6), 656–672. https://doi.org/10.1089/crispr.2021.0051
Nguyen, L. T.; Macaluso, N. C.; Pizzano, B. L. M.; Cash, M. N.; Spacek, J.; Karasek, J.; Miller, M. R.; Lednicky, J. A.; Dinglasan, R. R.; Salemi, M. & Jain, P. K. (2022). A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern. eBioMedicine, 77, 103926. https://doi.org/10.1016/j.ebiom.2022.103926
Nguyen, L.-T.; Schmidt, H. A.; von Haeseler, A. & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(3), 268–274. https://doi.org/10.1093/molbev/msu300
Nixon, S. L.; Daly, R. A.; Borton, M. A.; Solden, L. M.; Welch, S. A.; Cole, D. R.; Mouser, P. J.; Wilkins, M. J. & Wrighton, K. C. (2019). Genome-resolved metagenomics extends the environmental distribution of the Verrucomicrobia phylum to the deep terrestrial subsurface. mSphere, 4(1). https://doi.org/10.1128/mSphere.00613-19
Nordberg, H.; Cantor, M.; Dusheyko, S.; Hua, S.; Poliakov, A.; Shabalov, I.; Smirnova, T.; Grigoriev, I. V. & Dubchak, I. (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Research, 42(D1), D26–D31. https://doi.org/10.1093/nar/gkt1069
Orakov, A.; Fullam, A.; Coelho, L. P.; Khedkar, S.; Szklarczyk, D.; Mende, D. R.; Schmidt, T. S. B. & Bork, P. (2021). GUNC: Detection of chimerism and contamination in prokaryotic genomes. Genome Biology, 22(1), 178. https://doi.org/10.1186/s13059-021-02393-0
Parks, D. H.; Rinke, C.; Chuvochina, M.; Chaumeil, P. A.; Woodcroft, B. J.; Evans, P. N.; Hugenholtz, P. & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533–1542. https://doi.org/10.1038/s41564-017-0012-7
Parmar, K.; Dafale, N.; Pal, R.; Tikariha, H. & Purohit, H. (2018). An insight into phage diversity at environmental habitats using comparative metagenomics approach. Current Microbiology, 75(1), 132–141. https://doi.org/10.1007/s00284-017-1357-0
Pearson, B. M.; Louwen, R.; van Baarlen, P. & van Vliet, A. H. M. (2015). Differential distribution of type II CRISPR-Cas systems in agricultural and nonagricultural Campylobacter coli and Campylobacter jejuni isolates correlates with lack of shared environments. Genome Biology and Evolution, 7(9), 2663–2679. https://doi.org/10.1093/gbe/evv174
Peters, J. E.; Makarova, K. S.; Shmakov, S. & Koonin, E. V. (2017). Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proceedings of the National Academy of Sciences of the United States of America, 114(40), E7358–E7366. https://doi.org/10.1073/pnas.1709035114
Podar, P. T.; Yang, Z.; Björnsdóttir, S. H. & Podar, M. (2020). Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Frontiers in Microbiology, 11, 1625. https://doi.org/10.3389/fmicb.2020.01625
Pruitt, K. D.; Tatusova, T. & Maglott, D. R. (2004). NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(D1), D501–D504. https://doi.org/10.1093/nar/gki025
Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J. & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219
Rubio, A.; Sprang, M.; Garzón, A.; Moreno-Rodriguez, A.; Pachón-Ibáñez, M. E.; Pachón, J.; Andrade-Navarro, M. A. & Pérez-Pulido, A. J. (2023). Analysis of bacterial pangenomes reduces CRISPR dark matter and reveals strong association between membranome and CRISPR-Cas systems. Science Advances, 9(4), eadd8911. https://doi.org/10.1126/sciadv.add8911
Russel, J.; Pinilla-Redondo, R.; Mayo-Muñoz, D.; Shah, S. A. & Sørensen, S. J. (2020). CRISPRCasTyper: Automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR Journal, 3(5), 462–469. https://doi.org/10.1089/crispr.2020.0059
Salgado, O.; Guajardo-Leiva, S.; Moya-Beltrán, A.; Barbosa, C.; Ridley, C.; Tamayo-Leiva, J.; Quatrini, R.; Mojica, F. J. M. & Díez, B. (2022). Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Frontiers in Microbiology, 13, 1069452. https://doi.org/10.3389/fmicb.2022.1069452
Schmidt, S. T.; Yu, F. B.; Blainey, P. C.; May, A. P. & Quake, S. R. (2019). Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 23100–23105. https://doi.org/10.1073/pnas.1904273116
Shams, A.; Higgins, S. A.; Fellmann, C.; Laughlin, T. G.; Oakes, B. L.; Lew, R.; Kim, S.; Lukarska, M.; Arnold, M.; Staahl, B. T.; Doudna, J. A. & Savage, D. F. (2021). Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules. Nature Communications, 12, 5664. https://doi.org/10.1038/s41467-021-25992-8
Sharma, A.; Schmidt, M.; Kiesel, B.; Mahato, N. K.; Cralle, L.; Singh, Y.; Richnow, H. H.; Gilbert, J. A.; Arnold, W. & Lal, R. (2018). Bacterial and archaeal viruses of Himalayan hot springs at Manikaran modulate host genomes. Frontiers in Microbiology, 9, 3095. https://doi.org/10.3389/fmicb.2018.03095
Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O. O.; Gootenberg, J. S.; Makarova, K. S.; Wolf, Y. I.; Severinov, K.; Zhang, F. & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 15(3), 169–182. https://doi.org/10.1038/nrmicro.2016.184
Shmakov, S. A.; Sitnik, V.; Makarova, K. S.; Wolf, Y. I.; Severinov, K. V. & Koonin, E. V. (2017). The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio, 8(6), e01397-17. https://doi.org/10.1128/mBio.01397-17
Shmakov, S. A.; Wolf, Y. I.; Savitskaya, E.; Severinov, K. V. & Koonin, E. V. (2020). Mapping CRISPR spaceromes reveals vast host-specific viromes of prokaryotes. Communications Biology, 3, 1–9. https://doi.org/10.1038/s42003-020-1014-1
Snyder, J. C.; Bateson, M. M.; Lavin, M. & Young, M. J. (2010). Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples. Applied and Environmental Microbiology, 76(23), 7251–7258. https://doi.org/10.1128/AEM.01109-10
Sternberg, S. H.; Richter, H.; Charpentier, E. & Qimron, U. (2016). Adaptation in CRISPR-Cas systems. Molecular Cell, 61(6), 797–808. https://doi.org/10.1016/j.molcel.2016.01.030
Strazzulli, A.; Fusco, S.; Cobucci-Ponzano, B.; Moracci, M. & Contursi, P. (2017). Metagenomics of microbial and viral life in terrestrial geothermal environments. Reviews in Environmental Science and Biotechnology, 16(3), 425–454. https://doi.org/10.1007/s11157-017-9435-0
Strecker, J.; Ladha, A.; Gardner, Z.; Schmid-Burgk, J. L.; Makarova, K. S.; Koonin, E. V. & Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 363(6428), eaax9181. https://doi.org/10.1126/science.aax9181
Tian, Y.; Liu, R. R.; Xian, W. D.; Xiong, M.; Xiao, M. & Li, W. J. (2020). A novel thermal Cas12b from a hot spring bacterium with high target mismatch tolerance and robust DNA cleavage efficiency. International Journal of Biological Macromolecules, 147, 376–384. https://doi.org/10.1016/j.ijbiomac.2020.01.079
Tsui, T. K. M.; Hand, T. H.; Duboy, E. C. & Li, H. (2017). The impact of DNA topology and guide length on target selection by a cytosine-specific Cas9. ACS Synthetic Biology, 6(7), 1103–1113. https://doi.org/10.1021/acssynbio.7b00050
Uritskiy, G. V.; DiRuggiero, J. & Taylor, J. (2018). MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6(1), 158. https://doi.org/10.1186/s40168-018-0541-1
VanderWal, A. R.; Park, J.-U.; Polevoda, B.; Nicosia, J. K.; Molina Vargas, A. M.; Kellogg, E. H. & O’Connell, M. R. (2023). Csx28 is a membrane pore that enhances CRISPR-Cas13b–dependent antiphage defense. Science, 380(6633), 410–415. https://doi.org/10.1126/science.abm1184
Veith, P. D.; Nor Muhammad, N. A.; Dashper, S. G.; Likić, V. A.; Gorasia, D. G.; Chen, D.; Byrne, S. J.; Catmull, D. V. & Reynolds, E. C. (2013). Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification, and cell-surface attachment. Journal of Proteome Research, 12(10), 4449–4461. https://doi.org/10.1021/pr400487b
Vollmers, J.; Wiegand, S.; Lenk, F. & Kaster, A.-K. (2022). How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Research, 50(13), e76. https://doi.org/10.1093/nar/gkac294
Wang, Y.; Gallagher, L. A.; Andrade, P. A.; Liu, A.; Humphreys, I. R.; Turkarslan, S.; Cutler, K. J.; Arrieta-Ortiz, M. L.; Li, Y.; Radey, M. C.; McLean, J. S.; Cong, Q.; Baker, D.; Baliga, N. S.; Peterson, S. B. & Mougous, J. D. (2023). Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell, 186(22), 4803-4817.e13. https://doi.org/10.1016/j.cell.2023.08.017
Watson, B. N. J.; Steens, J. A.; Staals, R. H. J.; Westra, E. R. & van Houte, S. (2021). Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Cell Host & Microbe, 29(5), 715–725. https://doi.org/10.1016/J.CHOM.2021.03.018
Weinberger, A. D.; Sun, C. L.; Pluciński, M. M.; Denef, V. J.; Thomas, B. C.; Horvath, P.; Barrangou, R.; Gilmore, M. S.; Getz, W. M. & Banfield, J. F. (2012a). Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Computational Biology, 8(6), e1002475. https://doi.org/10.1371/journal.pcbi.1002475
Weinberger, A. D.; Wolf, Y. I.; Lobkovsky, A. E.; Gilmore, M. S. & Koonin, E. V. (2012b). Viral diversity threshold for adaptive immunity in prokaryotes. mBio, 3(4), e00456-12. https://doi.org/10.1128/mBio.00456-12
Weissman, J. L.; Laljani, R. M. R.; Fagan, W. F. & Johnson, P. L. F. (2019). Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME Journal, 13(11), 2589–2602. https://doi.org/10.1038/s41396-019-0411-2
Westra, E. R.; Dowling, A. J.; Broniewski, J. M. & van Houte, S. (2016). Evolution and ecology of CRISPR. Annual Review of Ecology, Evolution, and Systematics, 47, 307–331. https://doi.org/10.1146/annurev-ecolsys-121415-032428
Westra, E. R. & Levin, B. R. (2020). It is unclear how important CRISPR-Cas systems are for protecting natural populations of bacteria against infections by mobile genetic elements. Proceedings of the National Academy of Sciences, 117(49), 27777–27785. https://doi.org/10.1073/pnas.1915966117
Wheeler, D. L.; Barrett, T.; Benson, D. A.; Bryant, S. H.; Canese, K.; Chetvernin, V.; Church, D. M.; DiCuccio, M.; Edgar, R.; Federhen, S.; Geer, L. Y.; Kapustin, Y.; Khovayko, O.; Landsman, D.; Lipman, D. J.; Madden, T. L.; Maglott, D. R.; Ostell, J.; Miller, V. ... & Yaschenko, E. (2007). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 35(Database issue), D5–D12. https://doi.org/10.1093/nar/gkl1031
Yan, W. X.; Hunnewell, P.; Alfonse, L. E.; Carte, J. M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A. J.; Chong, S.; Makarova, K. S.; Koonin, E. V.; Cheng, D. R. & Scott, D. A. (2019). Functionally diverse type V CRISPR-Cas systems. Science, 363(6425), 88–91. https://doi.org/10.1126/science.aav7271
Yang, H. & Patel, D. J. (2019). CasX: A new and small CRISPR gene-editing protein. Cell Research, 29(6), 345–346. https://doi.org/10.1038/s41422-019-0165-4
Zaayman, M. & Wheatley, R. M. (2022). Fitness costs of CRISPR-Cas systems in bacteria. Microbiology, 168(6), 001209. https://doi.org/10.1099/mic.0.001209
Zablocki, O.; van Zyl, L. & Trindade, M. (2018). Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles, 22(5), 827–837. https://doi.org/10.1007/s00792-018-1052-5
Zeldovich, K. B.; Berezovsky, I. N. & Shakhnovich, E. I. (2007). Protein and DNA sequence determinants of thermophilic adaptation. PLoS Computational Biology, 3(6), 0062–0072. https://doi.org/10.1371/journal.pcbi.0030005
Zhao, L.; Qiu, M.; Li, X.; Yang, J. & Li, J. (2022). CRISPR-Cas13a system: A novel tool for molecular diagnostics. Frontiers in Microbiology, 13, 1069452. https://doi.org/10.3389/fmicb.2022.1069452
Zhou, F.; Yu, X.; Gan, R.; Ren, K.; Chen, C.; Ren, C.; Cui, M.; Liu, Y.; Gao, Y.; Wang, S.; Yin, M., Huang, T., Huang, Z. & Zhang, F. (2023). CRISPRimmunity: An interactive web server for CRISPR-associated important molecular events and modulators used in genome editing tool identification. Nucleic Acids Research, 51(W1), W93–W107. https://doi.org/10.1093/nar/gkad425
Zimmermann, L.; Stephens, A.; Nam, S.-Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A. N. & Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Journal of Molecular Biology, 430(12), 2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007
											Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Oscar Salgado (Autor/a)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
						
