High diversity and putative novel Class 2 CRISPR-Cas systems effectors from hot springs

Autores/as

  • Oscar Salgado Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile Autor/a

DOI:

https://doi.org/10.59758/rcci.2025.3.e51

Palabras clave:

CRISPR-Cas, Fuentes termales, Cas9, Termófilos

Resumen

CRISPR-Cas systems are present in ~42% of the bacterial and ~80% of archaeal genomes from all environments but enriched in thermophilic and hyperthermophilic members, reaching ~80% prevalence. Most descriptions of CRISPR-Cas in thermophiles consider hyperthermophilic archaeal species, where class 2 CRISPR-Cas systems are virtually absent. Despite their abundance in thermal environments, no study has described CRISPR-Cas diversity in hot springs communities worldwide in mesothermophilic (40°C-80°C) and circumneutral pH (6–8). Objective: To describe the types and subtypes of CRISPR-Cas systems in 37 hot springs metagenomes within this temperature and pH ranges, emphasizing the mining of novel class 2 variants. Methodology: Quantification of CRISPR-Cas systems through bioinformatic tools. Results: Searching all CRISPR-Cas systems revealed 2296 systems in hot springs, encompassing all types described to date. Using a phylogenetic and identity matrix approach, 57 class 2 effector proteins Cas9 were found, revealing potentially novel variants of Cas9. Conclusions: The large diversity observed could be the first glance toward further characterization of CRISPR-Cas loci and potential new variants with biotechnological applications. Furthermore, the results highlight hot springs for studies of the ecology and evolution of CRISPR-Cas by revealing new genetic sequences that can contribute to filling the gaps in the evolution of these systems.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adalsteinsson, B. T.; Kristjansdottir, T.; Merre, W.; Helleux, A.; Dusaucy, J.; Tourigny, M.; Fridjonsson, O.; Hreggvidsson, G. O. (2021). Efficient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant. Scientific Reports, 11(1), 9586. https://doi.org/10.1038/s41598-021-89029-2

Alcorta, J.; Alarcón-Schumacher, T.; Salgado, O. & Díez, B. (2020). Taxonomic novelty and distinctive genomic features of hot spring cyanobacteria. Frontiers in Genetics, 11, 1391. https://doi.org/10.3389/fgene.2020.568223

Aliaga Goltsman, D. S.; Alexander, L. M.; Lin, J.-L.; Fregoso Ocampo, R.; Freeman, B.; Lamothe, R. C.; Perez Rivas, A.; Temoche-Diaz, M. M.; Chadha, S.; Nordenfelt, N.; Janson, O. P.; Barr, I.; Devoto, A. E.; Cost, G. J.; Butterfield, C. N.; Thomas, B. C.; Brown, C. T. (2022). Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nature Communications, 13, 7602. https://doi.org/10.1038/s41467-022-35257-7

Ali, Z.; Aman, R.; Mahas, A.; Rao, G. S.; Tehseen, M.; Marsic, T.; Salunke, R.; Subudhi, A. K.; Hala, S. M.; Hamdan, S. M.; Pain, A.; Alofi, F. S.; Alsomali, A.; Hashem, A. M.; Khogeer, A.; Almontashiri, N. A. M.; Abedalthagafi, M.; Hassan, N. & Mahfouz, M. M. (2020). iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Research, 288, 198129. https://doi.org/10.1016/j.virusres.2020.198129

Al-Shayeb, B.; Sachdeva, R.; Chen, L.-X.; Ward, F.; Munk, P.; Devoto, A.; Castelle, C. J.; Olm, M. R.; Bouma-Gregson, K.; Amano, Y.; He, C.; Méheust, R.; Brooks, B.; Thomas, A.; Lavy, A.; Matheus-Carnevali, P.; Sun, C.; Goltsman, D. S. A.; Borton, M. A.; Sharrar, A.; Jaffe, A. L.; Nelson, T. C.; Kantor, R.; Keren, R.; Lane, K. R.; Farag, I. F.; Lei, S.; Finstad, K.; Amundson, R.; Anantharaman, K.; Zhou, J.; Probst, A. J.; Power, M. E.; Tringe, S. G.; Li, W.-J.; Wrighton, K.; Harrison, S.; Morowitz, M.; Relman, D. A.; Doudna, J. A.; Lehours, A.-C.; Warren, L.; Cate, J. H. D.; Santini, J. M., & Banfield, J. F. (2020). Clades of huge phages from across Earth’s ecosystems. Nature, 578, 425–431. https://doi.org/10.1038/s41586-020-2007-4

Altae-Tran, H.; Kannan, S.; Demircioglu, F. E.; Oshiro, R.; Nety, S. P.; McKay, L. J.; Dlakić, M.; Inskeep, W. P.; Makarova, K. S.; Macrae, R. K.; Koonin, E. V., & Zhang, F. (2021). The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science, 374, 57–65. https://doi.org/10.1126/science.abj6856

Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Anderson, R. E.; Brazelton, W. J. & Baross, J. A. (2011). Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiology Ecology, 77(1), 120–133. https://doi.org/10.1111/j.1574-6941.2011.01090.x

Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D. A. & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140

Barrangou, R. & Gersbach, C. A. (2017). Expanding the CRISPR Toolbox: Targeting RNA with Cas13b. Molecular Cell, 65(5), 582–584. https://doi.org/10.1016/j.molcel.2017.02.002

Bolduc, B.; Shaughnessy, D. P.; Wolf, Y. I.; Koonin, E. V.; Roberto, F. F. & Young, M. (2012). Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. Journal of Virology, 86(10), 5562–5573. https://doi.org/10.1128/JVI.07196-11

Bowers, R. M.; Kyrpides, N. C.; Stepanauskas, R.; Harmon-Smith, M.; Doud, D.; Reddy, T. B. K.; Schulz, F.; Jarett, J.; Rivers, A. R.; Eloe-Fadrosh, E. A.; Tringe, S. G.; Ivanova, N. N.; Copeland, A.; Clum, A.; Becraft, E. D.; Malmstrom, R. R.; Birren, B.; Podar, M.; Bork, P. ... & Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 35(7), 725–731. https://doi.org/10.1038/nbt.3893

Broniewski, J. M.; Meaden, S.; Paterson, S.; Buckling, A. & Westra, E. R. (2020). The effect of phage genetic diversity on bacterial resistance evolution. ISME Journal, 14(4), 828–836. https://doi.org/10.1038/s41396-019-0577-7

Burstein, D.; Harrington, L. B.; Strutt, S. C.; Probst, A. J.; Anantharaman, K.; Thomas, B. C.; Doudna, J. A. & Banfield, J. F. (2016). New CRISPR–Cas systems from uncultivated microbes. Nature, 542(7641), 237–241. https://doi.org/10.1038/nature21059

Capella-Gutiérrez, S.; Silla-Martínez, J. M. & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Chaumeil, P. A.; Mussig, A. J.; Hugenholtz, P. & Parks, D. H. (2020). GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36(6), 1925–1927. https://doi.org/10.1093/bioinformatics/btz848

Chevallereau, A.; Meaden, S.; van Houte, S.; Westra, E. R. & Rollie, C. (2019). The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772), 20180094. https://doi.org/10.1098/rstb.2018.0094

Childs, L. M.; England, W. E.; Young, M. J.; Weitz, J. S. & Whitaker, R. J. (2014). CRISPR-induced distributed immunity in microbial populations. PLoS ONE, 9(4), e101710. https://doi.org/10.1371/journal.pone.0101710

Conrad, R. A.; Evenhuis, J. P.; Lipscomb, R. S.; Pérez-Pascual, D.; Stevick, R. J.; Birkett, C.; Ghigo, J.-M. & McBride, M. J. (2022). Flavobacterium columnare ferric iron uptake systems are required for virulence. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1029833

Crawley, A. B.; Henriksen, J. R. & Barrangou, R. (2018). CRISPRdisco: An automated pipeline for the discovery and analysis of CRISPR-Cas systems. CRISPR Journal, 1(3), 171–181. https://doi.org/10.1089/crispr.2017.0022

Doron, S.; Melamed, S.; Ofir, G.; Leavitt, A.; Lopatina, A.; Keren, M.; Amitai, G. & Sorek, R. (2018). Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 359(6379), eaar4120. https://doi.org/10.1126/science.aar4120

Drake, J. W. (2009). Avoiding dangerous missense: Thermophiles display especially low mutation rates. PLoS Genetics, 5(1), e1000520. https://doi.org/10.1371/journal.pgen.1000520

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340

Esquerra-Ruvira, B.; Baquedano, I.; Ruiz, R.; Fernández, A.; Montoliu, L. & Mojica, F. J. M. (2023). Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering. Microbial Biotechnology, 16(6), 1505–1523. https://doi.org/10.1111/1751-7915.14266

Fan, C.; Zhang, W.; Su, X.; Ji, W.; Luo, H.; Zhang, Y.; Liu, B.; Yao, B.; Huang, H. & Xu, X. (2021). CRISPR/Cas9-mediated genome editing directed by a 5S rRNA–tRNAGly hybrid promoter in the thermophilic filamentous fungus Humicola insolens. Biotechnology for Biofuels, 14(1), 206. https://doi.org/10.1186/s13068-021-02057-y

Faure, G.; Shmakov, S. A.; Yan, W. X.; Cheng, D. R.; Scott, D. A.; Peters, J. E.; Makarova, K. S. & Koonin, E. V. (2019). CRISPR–Cas in mobile genetic elements: Counter-defense and beyond. Nature Reviews Microbiology, 17(8), 513–525. https://doi.org/10.1038/s41579-019-0204-7

Fonfara, I.; Le Rhun, A.; Chylinski, K.; Makarova, K. S.; Lécrivain, A.-L.; Bzdrenga, J.; Koonin, E. V. & Charpentier, E. (2014). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Research, 42(4), 2577–2590. https://doi.org/10.1093/nar/gkt1074

Friedman, R.; Drake, J. W. & Hughes, A. L. (2004). Genome-wide patterns of nucleotide substitution reveal stringent functional constraints on the protein sequences of thermophiles. Genetics, 167(4), 1507–1512. https://doi.org/10.1534/genetics.104.026344

Fu, L.; Niu, B.; Zhu, Z.; Wu, S. & Li, W. (2012). CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565

Fuchs, R. T.; Curcuru, J. L.; Mabuchi, M.; Noireterre, A.; Weigele, P. R.; Sun, Z. & Robb, G. B. (2022). Characterization of Cme and Yme thermostable Cas12a orthologs. Communications Biology, 5, 1–16. https://doi.org/10.1038/s42003-022-03275-2

Gasiunas, G.; Young, J. K.; Karvelis, T.; Kazlauskas, D.; Urbaitis, T.; Jasnauskaite, M.; Grusyte, M. M.; Paulraj, S.; Wang, P.-H.; Hou, Z.; Dooley, S. K.; Cigan, M.; Alarcon, C.; Chilcoat, N. D.; Bigelyte, G.; Curcuru, J. L.; Mabuchi, M.; Sun, Z.; Fuchs, R. T.; Schildkraut, E.; Weigele, P. R.; Jack, W. E.; Robb, G. B.; Venclovas, Č. & Siksnys, V. (2020). A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nature Communications, 11(1), 5512. https://doi.org/10.1038/s41467-020-19344-1

Gault, S.; Higgins, P. M.; Cockell, C. S. & Gillies, K. (2021). A meta-analysis of the activity, stability, and mutational characteristics of temperature-adapted enzymes. Bioscience Reports, 41(6), BSR20210336. https://doi.org/10.1042/BSR20210336

Glew, M. D.; Veith, P. D.; Peng, B.; Chen, Y.-Y.; Gorasia, D. G.; Yang, Q.; Slakeski, N.; Chen, D.; Moore, C.; Crawford, S. & Reynolds, E. C. (2012). PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. Journal of Biological Chemistry, 287(30), 24605–24617. https://doi.org/10.1074/jbc.M112.369223

Gostimskaya, I. (2022). CRISPR–Cas9: A history of its discovery and ethical considerations of its use in genome editing. Biochemistry (Moscow), 87(7), 777–788. https://doi.org/10.1134/S0006297922080090

Guajardo-Leiva, S.; Pedrós-Alió, C.; Salgado, O.; Pinto, F. & Díez, B. (2018). Active crossfire between cyanobacteria and cyanophages in phototrophic mat communities within hot springs. Frontiers in Microbiology, 9, 2039. https://doi.org/10.3389/fmicb.2018.02039

Guajardo-Leiva, S.; Santos, F.; Salgado, O.; Regeard, C.; Quillet, L. & Díez, B. (2021). Unveiling ecological and genetic novelty within lytic and lysogenic viral communities of hot spring phototrophic microbial mats. Microbiology Spectrum, 9(6), e00694-21. https://doi.org/10.1128/spectrum.00694-21

Harrington, L. B.; Paez-Espino, D.; Staahl, B. T.; Chen, J. S.; Ma, E.; Kyrpides, N. C. & Doudna, J. A. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nature Communications, 8, 1–8. https://doi.org/10.1038/s41467-017-01408-4

Harsij, Z.; Ghafoorzadeh, Z. & Goharian, E. (2024). The CRISPR revolution: Unraveling the mysteries of Life’s genetic code. Gene, 892, 147870. https://doi.org/10.1016/j.gene.2023.147870

Heidelberg, J. F.; Nelson, W. C.; Schoenfeld, T. & Bhaya, D. (2009). Germ warfare in a microbial mat community: CRISPRs provide insights into the coevolution of host and viral genomes. PLoS ONE, 4(3), e4169. https://doi.org/10.1371/journal.pone.0004169

Held, N. L. & Whitaker, R. J. (2009). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environmental Microbiology, 11(2), 457–466. https://doi.org/10.1111/j.1462-2920.2008.01784.x

Hille, F.; Richter, H.; Wong, S. P.; Bratovič, M.; Ressel, S. & Charpentier, E. (2018). The biology of CRISPR-Cas: Backward and forward. Cell, 172(6), 1239–1259. https://doi.org/10.1016/j.cell.2017.11.032

Hou, S.; Makarova, K. S.; Saw, J. H.; Senin, P.; Ly, B. V.; Zhou, Z.; Ren, Y.; Wang, J.; Galperin, M. Y.; Omelchenko, M. V.; Wolf, Y. I.; Yutin, N.; Koonin, E. V.; Stott, M. B.; Mountain, B. W.; Crowe, M. A.; Smirnova, A. V.; Dunfield, P. F.; Feng, L.; Wang, L. & Alam, M. (2008). Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biology Direct, 3, 26. https://doi.org/10.1186/1745-6150-3-26

Ipoutcha, T.; Tsarmpopoulos, I.; Talenton, V.; Gaspin, C.; Moisan, A.; Walker, C. A.; Brownlie, J.; Blanchard, A.; Thebault, P. & Sirand-Pugnet, P. (2019). Multiple origins and specific evolution of CRISPR/Cas9 systems in minimal bacteria (Mollicutes). Frontiers in Microbiology, 10, 2701. https://doi.org/10.3389/fmicb.2019.02701

Iranzo, J.; Lobkovsky, A. E.; Wolf, Y. I. & Koonin, E. V. (2013). Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. Journal of Bacteriology, 195(17), 3834–3844. https://doi.org/10.1128/JB.00412-13

Jarett, J. K.; Džunková, M.; Schulz, F.; Roux, S.; Paez-Espino, D.; Eloe-Fadrosh, E.; Jungbluth, S. P.; Ivanova, N.; Spear, J. R.; Carr, S. A.; Trivedi, C. B.; Corsetti, F. A.; Johnson, H. A.; Becraft, E.; Kyrpides, N.; Stepanauskas, R. & Woyke, T. (2020). Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME Journal, 14(10), 2527–2541. https://doi.org/10.1038/s41396-020-0705-4

Jiang, W.; Maniv, I.; Arain, F.; Wang, Y.; Levin, B. R. & Marraffini, L. A. (2013). Dealing with the evolutionary downside of CRISPR immunity: Bacteria and beneficial plasmids. PLoS Genetics, 9(6), e1003844. https://doi.org/10.1371/journal.pgen.1003844

Koonin, E. V. & Krupovic, M. (2023). New faces of prokaryotic mobile genetic elements: Guide RNAs link transposition with host defense mechanisms. Current Opinion in Systems Biology, 36, 100473. https://doi.org/10.1016/j.coisb.2023.100473

Koonin, E. V. & Makarova, K. S. (2022). Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biology, 20(7), e3001481. https://doi.org/10.1371/journal.pbio.3001481

Koonin, E. V. & Makarova, K. S. (2019). Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1772), 20180087. https://doi.org/10.1098/rstb.2018.0087

Koonin, E. V. & Makarova, K. S. (2009). CRISPR-Cas: An adaptive immunity system in prokaryotes. F1000 Biology Reports, 6, 1–6. https://doi.org/10.3410/B1-95

Koonin, E. V. & Wolf, Y. I. (2016). Just how Lamarckian is CRISPR-Cas immunity: The continuum of evolvability mechanisms. Biology Direct, 11, 9. https://doi.org/10.1186/s13062-016-0111-z

Lan, X. R.; Liu, Z. L. & Niu, D. K. (2022). Precipitous increase of bacterial CRISPR-Cas abundance at around 45°C. Frontiers in Microbiology, 13, 542. https://doi.org/10.3389/fmicb.2022.773114

Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1), 18–28. https://doi.org/10.1016/j.cell.2015.12.041

Le Lay, C.; Stott, M. B.; Shi, M.; Sadiq, S. & Holmes, E. C. (2023). A metatranscriptomic analysis of geothermal hot springs reveals diverse RNA viruses including the phylum Lenarviricota. Virology, 587, 109873. https://doi.org/10.1016/j.virol.2023.109873

Le, Y.; Fu, Y. & Sun, J. (2020). Genome editing of the anaerobic thermophile Thermoanaerobacter ethanolicus using thermostable Cas9. Applied and Environmental Microbiology, 87(18), e01773-20. https://doi.org/10.1128/AEM.01773-20

Le, Y. & Sun, J. (2022). Chapter one - CRISPR/Cas genome editing systems in thermophiles: Current status, associated challenges, and future perspectives. In G. M. Gadd & S. Sariaslani (Eds.), Advances in Applied Microbiology (pp. 1–30). Academic Press. https://doi.org/10.1016/bs.aambs.2022.02.001

Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D. & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268

Makarova, K. S.; Gao; L.; Zhang, F. & Koonin, E. V. (2019). Unexpected connections between type VI-B CRISPR-Cas systems, bacterial natural competence, ubiquitin signaling network and DNA modification through a distinct family of membrane proteins. FEMS Microbiology Letters, 366(20), fnz088. https://doi.org/10.1093/femsle/fnz088

Makarova, K. S.; Grishin, N. V.; Shabalina, S. A.; Wolf, Y. I. & Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1, 7. https://doi.org/10.1186/1745-6150-1-7

Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Wolf, Y. I.; Yakunin, A. F.; van der Oost, J. & Koonin, E. V. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467–477. https://doi.org/10.1038/nrmicro2577

Makarova, K. S.; Wolf, Y. I.; Alkhnbashi, O. S.; Costa, F.; Shah, S. A.; Saunders, S. J.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Haft, D. H.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Terns, R. M.; Terns, M. P.; White, M. F.; Yakunin, A. F.; Garrett, R. A.; van der Oost, J. ... & Koonin, E. V. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722–736. https://doi.org/10.1038/nrmicro3569

Makarova, K. S.; Wolf, Y. I.; Iranzo, J.; Shmakov, S. A.; Alkhnbashi, O. S.; Brouns, S. J. J.; Charpentier, E., Cheng, D.; Haft, D. H.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Scott, D.; Shah, S. A.; Siksnys, V.; Terns, M. P.; Venclovas, Č.; White, M. F.; Yakunin, A. F.; Yan, W. ... & Koonin, E. V. (2020). Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67–83. https://doi.org/10.1038/s41579-019-0299-x

Makarova, K. S.; Wolf, Y. I. & Koonin, E. V. (2022). Evolutionary classification of CRISPR-Cas systems. In Crispr (pp. 13–38). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781683673798.ch2

Makarova, K. S.; Wolf, Y. I. & Koonin, E. V. (2018). Classification and nomenclature of CRISPR-Cas systems: Where from here? CRISPR Journal, 1(6), 325–336. https://doi.org/10.1089/crispr.2018.0033

Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C. J.; Lu, S.; Chitsaz, F.; Derbyshire, M. K.; Geer, R. C.; Gonzales, N. R.; Gwadz, M.; Hurwitz, D. I.; Lu, F.; Marchler, G. H.; Song, J. S.; Thanki, N.; Wang, Z.; Yamashita, R. A.; Zhang, D. ... & Bryant, S. H. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(D1), D200–D203. https://doi.org/10.1093/nar/gkw1129

Marchler-Bauer, A. & Bryant, S. H. (2004). CD-Search: Protein domain annotations on the fly. Nucleic Acids Research, 32(W1), W327–W331. https://doi.org/10.1093/nar/gkh454

Marraffini, L. A. (2015). CRISPR-Cas immunity in prokaryotes. Nature, 526(7571), 55–61. https://doi.org/10.1038/nature15386

Meaden, S.; Biswas, A.; Arkhipova, K.; Morales, S. E.; Dutilh, B. E.; Westra, E. R. & Fineran, P. C. (2022). High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Current Biology, 32(1), 220–227.e5. https://doi.org/10.1016/J.CUB.2021.10.038

Medina-Aparicio, L.; Rodriguez-Gutierrez, S.; Rebollar-Flores, J. E.; Martínez-Batallar, Á. G.; Mendoza-Mejía, B. D.; Aguirre-Partida, E. D.; Vázquez, A.; Encarnación, S.; Calva, E. & Hernández-Lucas, I. (2021). The CRISPR-Cas system is involved in OmpR genetic regulation for outer membrane protein synthesis in Salmonella Typhi. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.657404

Mikheenko, A.; Saveliev, V. & Gurevich, A. (2016). MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics, 32(7), 1088–1090. https://doi.org/10.1093/bioinformatics/btv697

Mohanraju, P.; Makarova, K. S.; Zetsche, B.; Zhang, F.; Koonin, E. V. & Van Der Oost, J. (2016). Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353(6299), aad5147. https://doi.org/10.1126/science.aad5147

Mojica, F. J. M. & Montoliu, L. (2016). On the origin of CRISPR-Cas technology: From prokaryotes to mammals. Trends in Microbiology, 24(9), 811–820. https://doi.org/10.1016/j.tim.2016.06.005

Mougiakos, I.; Mohanraju, P.; Bosma, E. F.; Vrouwe, V.; Finger Bou, M.; Naduthodi, M. I. S.; Gussak, A.; Brinkman, R. B. L.; van Kranenburg, R. & van der Oost, J. (2017). Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nature Communications, 8(1), 1647. https://doi.org/10.1038/s41467-017-01591-4

Moya-Beltrán, A.; Makarova, K. S.; Acuña, L. G.; Wolf, Y. I.; Covarrubias, P. C.; Shmakov, S. A.; Silva, C.; Tolstoy, I.; Johnson, D. B., Koonin, E. V. & Quatrini, R. (2021). Evolution of Type IV CRISPR-Cas systems: Insights from CRISPR loci in integrative conjugative elements of Acidithiobacillia. CRISPR Journal, 4(6), 656–672. https://doi.org/10.1089/crispr.2021.0051

Nguyen, L. T.; Macaluso, N. C.; Pizzano, B. L. M.; Cash, M. N.; Spacek, J.; Karasek, J.; Miller, M. R.; Lednicky, J. A.; Dinglasan, R. R.; Salemi, M. & Jain, P. K. (2022). A thermostable Cas12b from Brevibacillus leverages one-pot discrimination of SARS-CoV-2 variants of concern. eBioMedicine, 77, 103926. https://doi.org/10.1016/j.ebiom.2022.103926

Nguyen, L.-T.; Schmidt, H. A.; von Haeseler, A. & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(3), 268–274. https://doi.org/10.1093/molbev/msu300

Nixon, S. L.; Daly, R. A.; Borton, M. A.; Solden, L. M.; Welch, S. A.; Cole, D. R.; Mouser, P. J.; Wilkins, M. J. & Wrighton, K. C. (2019). Genome-resolved metagenomics extends the environmental distribution of the Verrucomicrobia phylum to the deep terrestrial subsurface. mSphere, 4(1). https://doi.org/10.1128/mSphere.00613-19

Nordberg, H.; Cantor, M.; Dusheyko, S.; Hua, S.; Poliakov, A.; Shabalov, I.; Smirnova, T.; Grigoriev, I. V. & Dubchak, I. (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Research, 42(D1), D26–D31. https://doi.org/10.1093/nar/gkt1069

Orakov, A.; Fullam, A.; Coelho, L. P.; Khedkar, S.; Szklarczyk, D.; Mende, D. R.; Schmidt, T. S. B. & Bork, P. (2021). GUNC: Detection of chimerism and contamination in prokaryotic genomes. Genome Biology, 22(1), 178. https://doi.org/10.1186/s13059-021-02393-0

Parks, D. H.; Rinke, C.; Chuvochina, M.; Chaumeil, P. A.; Woodcroft, B. J.; Evans, P. N.; Hugenholtz, P. & Tyson, G. W. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2(11), 1533–1542. https://doi.org/10.1038/s41564-017-0012-7

Parmar, K.; Dafale, N.; Pal, R.; Tikariha, H. & Purohit, H. (2018). An insight into phage diversity at environmental habitats using comparative metagenomics approach. Current Microbiology, 75(1), 132–141. https://doi.org/10.1007/s00284-017-1357-0

Pearson, B. M.; Louwen, R.; van Baarlen, P. & van Vliet, A. H. M. (2015). Differential distribution of type II CRISPR-Cas systems in agricultural and nonagricultural Campylobacter coli and Campylobacter jejuni isolates correlates with lack of shared environments. Genome Biology and Evolution, 7(9), 2663–2679. https://doi.org/10.1093/gbe/evv174

Peters, J. E.; Makarova, K. S.; Shmakov, S. & Koonin, E. V. (2017). Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proceedings of the National Academy of Sciences of the United States of America, 114(40), E7358–E7366. https://doi.org/10.1073/pnas.1709035114

Podar, P. T.; Yang, Z.; Björnsdóttir, S. H. & Podar, M. (2020). Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Frontiers in Microbiology, 11, 1625. https://doi.org/10.3389/fmicb.2020.01625

Pruitt, K. D.; Tatusova, T. & Maglott, D. R. (2004). NCBI reference sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(D1), D501–D504. https://doi.org/10.1093/nar/gki025

Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J. & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219

Rubio, A.; Sprang, M.; Garzón, A.; Moreno-Rodriguez, A.; Pachón-Ibáñez, M. E.; Pachón, J.; Andrade-Navarro, M. A. & Pérez-Pulido, A. J. (2023). Analysis of bacterial pangenomes reduces CRISPR dark matter and reveals strong association between membranome and CRISPR-Cas systems. Science Advances, 9(4), eadd8911. https://doi.org/10.1126/sciadv.add8911

Russel, J.; Pinilla-Redondo, R.; Mayo-Muñoz, D.; Shah, S. A. & Sørensen, S. J. (2020). CRISPRCasTyper: Automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR Journal, 3(5), 462–469. https://doi.org/10.1089/crispr.2020.0059

Salgado, O.; Guajardo-Leiva, S.; Moya-Beltrán, A.; Barbosa, C.; Ridley, C.; Tamayo-Leiva, J.; Quatrini, R.; Mojica, F. J. M. & Díez, B. (2022). Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Frontiers in Microbiology, 13, 1069452. https://doi.org/10.3389/fmicb.2022.1069452

Schmidt, S. T.; Yu, F. B.; Blainey, P. C.; May, A. P. & Quake, S. R. (2019). Nucleic acid cleavage with a hyperthermophilic Cas9 from an uncultured Ignavibacterium. Proceedings of the National Academy of Sciences of the United States of America, 116(47), 23100–23105. https://doi.org/10.1073/pnas.1904273116

Shams, A.; Higgins, S. A.; Fellmann, C.; Laughlin, T. G.; Oakes, B. L.; Lew, R.; Kim, S.; Lukarska, M.; Arnold, M.; Staahl, B. T.; Doudna, J. A. & Savage, D. F. (2021). Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules. Nature Communications, 12, 5664. https://doi.org/10.1038/s41467-021-25992-8

Sharma, A.; Schmidt, M.; Kiesel, B.; Mahato, N. K.; Cralle, L.; Singh, Y.; Richnow, H. H.; Gilbert, J. A.; Arnold, W. & Lal, R. (2018). Bacterial and archaeal viruses of Himalayan hot springs at Manikaran modulate host genomes. Frontiers in Microbiology, 9, 3095. https://doi.org/10.3389/fmicb.2018.03095

Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O. O.; Gootenberg, J. S.; Makarova, K. S.; Wolf, Y. I.; Severinov, K.; Zhang, F. & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 15(3), 169–182. https://doi.org/10.1038/nrmicro.2016.184

Shmakov, S. A.; Sitnik, V.; Makarova, K. S.; Wolf, Y. I.; Severinov, K. V. & Koonin, E. V. (2017). The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio, 8(6), e01397-17. https://doi.org/10.1128/mBio.01397-17

Shmakov, S. A.; Wolf, Y. I.; Savitskaya, E.; Severinov, K. V. & Koonin, E. V. (2020). Mapping CRISPR spaceromes reveals vast host-specific viromes of prokaryotes. Communications Biology, 3, 1–9. https://doi.org/10.1038/s42003-020-1014-1

Snyder, J. C.; Bateson, M. M.; Lavin, M. & Young, M. J. (2010). Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples. Applied and Environmental Microbiology, 76(23), 7251–7258. https://doi.org/10.1128/AEM.01109-10

Sternberg, S. H.; Richter, H.; Charpentier, E. & Qimron, U. (2016). Adaptation in CRISPR-Cas systems. Molecular Cell, 61(6), 797–808. https://doi.org/10.1016/j.molcel.2016.01.030

Strazzulli, A.; Fusco, S.; Cobucci-Ponzano, B.; Moracci, M. & Contursi, P. (2017). Metagenomics of microbial and viral life in terrestrial geothermal environments. Reviews in Environmental Science and Biotechnology, 16(3), 425–454. https://doi.org/10.1007/s11157-017-9435-0

Strecker, J.; Ladha, A.; Gardner, Z.; Schmid-Burgk, J. L.; Makarova, K. S.; Koonin, E. V. & Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 363(6428), eaax9181. https://doi.org/10.1126/science.aax9181

Tian, Y.; Liu, R. R.; Xian, W. D.; Xiong, M.; Xiao, M. & Li, W. J. (2020). A novel thermal Cas12b from a hot spring bacterium with high target mismatch tolerance and robust DNA cleavage efficiency. International Journal of Biological Macromolecules, 147, 376–384. https://doi.org/10.1016/j.ijbiomac.2020.01.079

Tsui, T. K. M.; Hand, T. H.; Duboy, E. C. & Li, H. (2017). The impact of DNA topology and guide length on target selection by a cytosine-specific Cas9. ACS Synthetic Biology, 6(7), 1103–1113. https://doi.org/10.1021/acssynbio.7b00050

Uritskiy, G. V.; DiRuggiero, J. & Taylor, J. (2018). MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6(1), 158. https://doi.org/10.1186/s40168-018-0541-1

VanderWal, A. R.; Park, J.-U.; Polevoda, B.; Nicosia, J. K.; Molina Vargas, A. M.; Kellogg, E. H. & O’Connell, M. R. (2023). Csx28 is a membrane pore that enhances CRISPR-Cas13b–dependent antiphage defense. Science, 380(6633), 410–415. https://doi.org/10.1126/science.abm1184

Veith, P. D.; Nor Muhammad, N. A.; Dashper, S. G.; Likić, V. A.; Gorasia, D. G.; Chen, D.; Byrne, S. J.; Catmull, D. V. & Reynolds, E. C. (2013). Protein substrates of a novel secretion system are numerous in the Bacteroidetes phylum and have in common a cleavable C-terminal secretion signal, extensive post-translational modification, and cell-surface attachment. Journal of Proteome Research, 12(10), 4449–4461. https://doi.org/10.1021/pr400487b

Vollmers, J.; Wiegand, S.; Lenk, F. & Kaster, A.-K. (2022). How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Research, 50(13), e76. https://doi.org/10.1093/nar/gkac294

Wang, Y.; Gallagher, L. A.; Andrade, P. A.; Liu, A.; Humphreys, I. R.; Turkarslan, S.; Cutler, K. J.; Arrieta-Ortiz, M. L.; Li, Y.; Radey, M. C.; McLean, J. S.; Cong, Q.; Baker, D.; Baliga, N. S.; Peterson, S. B. & Mougous, J. D. (2023). Genetic manipulation of Patescibacteria provides mechanistic insights into microbial dark matter and the epibiotic lifestyle. Cell, 186(22), 4803-4817.e13. https://doi.org/10.1016/j.cell.2023.08.017

Watson, B. N. J.; Steens, J. A.; Staals, R. H. J.; Westra, E. R. & van Houte, S. (2021). Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Cell Host & Microbe, 29(5), 715–725. https://doi.org/10.1016/J.CHOM.2021.03.018

Weinberger, A. D.; Sun, C. L.; Pluciński, M. M.; Denef, V. J.; Thomas, B. C.; Horvath, P.; Barrangou, R.; Gilmore, M. S.; Getz, W. M. & Banfield, J. F. (2012a). Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Computational Biology, 8(6), e1002475. https://doi.org/10.1371/journal.pcbi.1002475

Weinberger, A. D.; Wolf, Y. I.; Lobkovsky, A. E.; Gilmore, M. S. & Koonin, E. V. (2012b). Viral diversity threshold for adaptive immunity in prokaryotes. mBio, 3(4), e00456-12. https://doi.org/10.1128/mBio.00456-12

Weissman, J. L.; Laljani, R. M. R.; Fagan, W. F. & Johnson, P. L. F. (2019). Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME Journal, 13(11), 2589–2602. https://doi.org/10.1038/s41396-019-0411-2

Westra, E. R.; Dowling, A. J.; Broniewski, J. M. & van Houte, S. (2016). Evolution and ecology of CRISPR. Annual Review of Ecology, Evolution, and Systematics, 47, 307–331. https://doi.org/10.1146/annurev-ecolsys-121415-032428

Westra, E. R. & Levin, B. R. (2020). It is unclear how important CRISPR-Cas systems are for protecting natural populations of bacteria against infections by mobile genetic elements. Proceedings of the National Academy of Sciences, 117(49), 27777–27785. https://doi.org/10.1073/pnas.1915966117

Wheeler, D. L.; Barrett, T.; Benson, D. A.; Bryant, S. H.; Canese, K.; Chetvernin, V.; Church, D. M.; DiCuccio, M.; Edgar, R.; Federhen, S.; Geer, L. Y.; Kapustin, Y.; Khovayko, O.; Landsman, D.; Lipman, D. J.; Madden, T. L.; Maglott, D. R.; Ostell, J.; Miller, V. ... & Yaschenko, E. (2007). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 35(Database issue), D5–D12. https://doi.org/10.1093/nar/gkl1031

Yan, W. X.; Hunnewell, P.; Alfonse, L. E.; Carte, J. M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A. J.; Chong, S.; Makarova, K. S.; Koonin, E. V.; Cheng, D. R. & Scott, D. A. (2019). Functionally diverse type V CRISPR-Cas systems. Science, 363(6425), 88–91. https://doi.org/10.1126/science.aav7271

Yang, H. & Patel, D. J. (2019). CasX: A new and small CRISPR gene-editing protein. Cell Research, 29(6), 345–346. https://doi.org/10.1038/s41422-019-0165-4

Zaayman, M. & Wheatley, R. M. (2022). Fitness costs of CRISPR-Cas systems in bacteria. Microbiology, 168(6), 001209. https://doi.org/10.1099/mic.0.001209

Zablocki, O.; van Zyl, L. & Trindade, M. (2018). Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles, 22(5), 827–837. https://doi.org/10.1007/s00792-018-1052-5

Zeldovich, K. B.; Berezovsky, I. N. & Shakhnovich, E. I. (2007). Protein and DNA sequence determinants of thermophilic adaptation. PLoS Computational Biology, 3(6), 0062–0072. https://doi.org/10.1371/journal.pcbi.0030005

Zhao, L.; Qiu, M.; Li, X.; Yang, J. & Li, J. (2022). CRISPR-Cas13a system: A novel tool for molecular diagnostics. Frontiers in Microbiology, 13, 1069452. https://doi.org/10.3389/fmicb.2022.1069452

Zhou, F.; Yu, X.; Gan, R.; Ren, K.; Chen, C.; Ren, C.; Cui, M.; Liu, Y.; Gao, Y.; Wang, S.; Yin, M., Huang, T., Huang, Z. & Zhang, F. (2023). CRISPRimmunity: An interactive web server for CRISPR-associated important molecular events and modulators used in genome editing tool identification. Nucleic Acids Research, 51(W1), W93–W107. https://doi.org/10.1093/nar/gkad425

Zimmermann, L.; Stephens, A.; Nam, S.-Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A. N. & Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Journal of Molecular Biology, 430(12), 2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

MB

Descargas

Publicado

2025-10-21

Número

Sección

Artículo proveniente de investigación o revisión de literatura

Categorías

Cómo citar

Salgado, O. (2025). High diversity and putative novel Class 2 CRISPR-Cas systems effectors from hot springs. Revista Científica Cuadernos De Investigación, 3, 1-26. https://doi.org/10.59758/rcci.2025.3.e51

Artículos similares

1-10 de 13

También puede Iniciar una búsqueda de similitud avanzada para este artículo.